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Abstract. The properties of the set of borderline images in discontinuous conservative systems are com-
monly investigated. The invertible system in which a stochastic web was found in 1999 is re-discussed
here. The result shows that the set of images of the borderline actually forms the same stochastic web.
The web has two typical local fine structures. Firstly, in some parts of the web the borderline crosses
the manifold of hyperbolic points so that the chaotic diffusion is damped greatly; secondly, in other parts
of phase space many holes and elliptic islands appear in the stochastic layer. This local structure shows
infinite self-similarity. The noninvertible system in which the so-called chaotic quasi-attractor was found
in [X.-M. Wang et al., Eur. Phys. J. D 19, 119 (2002)] is also studied here. The numerical investigation
shows that such a chaotic quasi-attractor is confined by the preceding lower order images of the borderline.
The mechanism of this confinement is revealed: a forbidden zone exists that any orbit can not visit, which
is the sub-phase space of one side of the first image of the borderline. Each order of the images of the
forbidden zone can be qualitatively divided into two sub-phase regions: one is the so-called escaping region
that provides the orbit with an escaping channel, the other is the so-called dissipative region where the
contraction of phase space occurs.

PACS. 05.45.Ac Low-dimensional chaos

1 Introduction

In recent years, discontinuous conservative systems have
attracted much attention [1–12]. Many strange dynam-
ical behaviors induced by discontinuity have been ob-
served. Some of them have attracted considerable inter-
est. Hu et al. firstly studied a system exemplified by a
particle in an infinite potential well subject to a peri-
odic kicking force [6]. Chen et al. remodelled the system
by introducing symmetrical kicks [7]. The model is de-
scribed by a concatenation of two standard maps with
different initial phases denoting symmetrical kicks. This
map is discontinuous and invertible. The characteristic
structure of phase space is a stochastic web immersed
in a chaotic sea. The chaotic diffusion along this web is
strongly damped when the strength of kicking force is
small. A stochastic web is a common manifestation in
conservative dynamic systems. This phenomenon is well
known in everywhere-smooth systems, which obey the
Kolmogonov-Arnold-Moser (KAM) theorem. In such sys-
tems a stochastic layer appears firstly in the neighborhood
of a seperatrix as result of a non-stationary perturbation.
In certain conditions, the merging of all stochastic lay-
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ers in phase space can form a single network, that is, a
stochastic web. This condition is often determined by a
critical value of the external or driven parameter. Beyond
the criticality point, the random walk of a particle along
this web can take it an arbitrary distance. Thus the exis-
tence of a web means an irremovable chaotic diffusion in
phase space [13]. However, in the case of reference [6] or
[7], the conditions held by the KAM theorem are ruined
by the discontinuity, so the mechanism for forming the
stochastic web should be a fundamental problem in this
system, and the cause behind why a chaotic diffusion is
strongly damped is also an essential subject.

Another interesting system is a model of an electronic
relaxation oscillator with over-voltage protection. Its dy-
namics is expressed by a discontinuous and noninvertible
concatenation of two area-preserving maps. The disconti-
nuity can induce the so-called quasi-dissipative property
due to the fact that there may be two inverse images for
one point, determined by the inverse mappings of the two
sub-maps, respectively. In certain conditions two points lo-
cated in the definition regions of the two sub-maps, respec-
tively, may merge into one during the iteration process,
which result in the collapse of phase space. The end-
results of phase space contraction are the so-called “quasi-
attractors”. References [8,9] reported that the iterations
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having started from some initial points often enter into the
elliptic islands since one inverse image of a point inside
the island remains inside, and the other outside. These
islands may be the so-called “regular quasi-attractors”.
However, the end-results of phase space contraction do not
exclude chaotic areas, which may be called “chaotic quasi-
attractors”. It had been discussed in a simplified model of
the aforementioned electronic oscillator in reference [10].
The result shows that the chaotic quasi-attractor will sud-
denly emerge via “quasi-intermittency” when the island,
or quasi-attractor, collides with the borderline and disap-
pears completely. The investigation also shows that the
set of images of the borderline forms the chaotic quasi-
attractor when the number of images tends to infinity.
Mira has analytically proved [14] that in certain kinds of
two-dimensional piecewise noninvertible maps, the chaotic
area is bounded by segments of images of the discontinu-
ity borderline. Our recent numerical study on the system
agrees with it. The sub-phase space of one side of the first
image of the borderline is actually a forbidden zone that
any trajectory can not visit, but that of the other side of
the borderline is the sub-phase space where the chaotic
quasi-attractor is located. So Mira’s conclusion can be ex-
tended to this kind of discontinuous conservative system.

In this article we focus on the properties of the sets
of discontinuity borderlines in both kinds of aforemen-
tioned area-preserving maps, invertible and noninvertible.
For this we shall firstly present the preceding lower order
images of the borderline to demonstrate how the stochas-
tic web is gradually formed and the chaotic diffusion is
confined to the web. Two types of local fine structures of
the stochastic web are also presented to reveal the cause
behind why the chaotic diffusion may be strongly damped.
We shall then discuss the mechanism that the chaotic
phase region in the noninvertible system is bounded by
the segments of the preceding lower order images of the
borderline. The paper is organized as follows. The discus-
sions of the invertible system is introduced in Section 2
where two local fine structures of the stochastic web are
used to resolve the problem proposed in the first para-
graph. The investigations on the noninvertible system is
presented in Section 3 where the forbidden zone and its
images are discussed. The summary and discussion are
presented in Section 4, the last section.

2 The set of images of borderline
in a discontinuous and invertible system

2.1 The set of images of borderline
and the stochastic web

The discontinuous and invertible model suggested in ref-
erence [7] will be discussed further to investigate more
completely the properties of the discontinuity borderline.

The mapping functions read

{
In+1 = f1x(θn, In) = In + K sin(θn + α)
θn+1 = f1y(θn, In) = θn + In+1

[mod. 2π] θn ∈ [0, π) (1)

{
In+1 = f2x(θn, In) = In + K sin(θn − α)
θn+1 = f2y(θn, In) = θn + In+1

[mod. 2π] θn ∈ [π, 2π) (2)

where θ and I respectively denote the position and angu-
lar momentum of the particle, K denotes the strength of
the impulsive force, and α denotes the angle between the
vertical direction (at which the pulse is applied) and the
diameter that connects the two positions of the boundaries
(hard walls).

Since the points on the borderline are non-
differentiable the system will no longer have the condition
required by the KAM theorem, and so all of the KAM
rings that transit the border will disappear. Therefore, no
local chaos exists in this system even if the perturbation
is very small. It can be demonstrated by the stochastic
web immersed in a chaotic sea and the boundless chaotic
diffusion along this web. However, as discussed in ref-
erence [7], the diffusion coefficient, D, which defined as
D = limn→∞ (In − I0)2/n (I0, In respectively denote the
initial value and that after n iterations), is very small. It
indicates that the chaotic diffusion is damped greatly by
the web.

Many examples show that the periodic orbits often lose
stability via the so-called edge collision bifurcation in dis-
sipative systems. A point on the discontinuous borderline
should be very unstable due to the fact that any small
perturbation of its position in some direction will induce
an infinitely large deviation. If the discontinuous point
belongs to a periodic orbit, the orbit should be very un-
stable for similar reasons. When the discontinuous point
belongs to an infinitely long iteration trajectory, the tra-
jectory should be chaotic because it shows infinitely large
deviations for a given small perturbation.

Just as Mira stated in reference [14], the phase re-
gion that is covered by the set of images of borderline
is chaotic, however, it can scarcely be a chaotic attrac-
tor due to the area-preserving property of both maps (1)
and (2), since their discontinuous concatenation is invert-
ible as well. So it is easy to understand that in the iter-
ation process the borderline is bent and split again and
again to form, in the end, the stochastic web. Figure 1a
shows the stochastic web when the parameters are fixed at
α = 0.4, K = 0.1. It is obtained by choosing 1000 points
evenly distributed in the segment, I ∈ [−0.4, 0.4], of bor-
derline, S = {(θ, I)�θ=π,I∈[−π,π]}, and recording 3000 it-
erations for each of these points. By comparing carefully
one can see that the stochastic web is the same of that
reported in reference [7] and shown in Figure 1b. We have
chosen several groups of parameters, all of the results sup-
port the same conclusion, that is, the set of images of the
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(a)

(b)

Fig. 1. Stochastic web in system (1, 2) formed by the set
of discontinuous border (a) and that formed by the iterations
from a point, (π, 0). (b) The parameters and the computation
methods are indicated in the text.

borderline can form a stochastic web. The first image of
the borderline can be written as S1 = {θ1, I1} that can be
obtained from the equation,{

I1 = f2x(θ0, I0)
θ1 = f2y(θ0, I0)

∀θ0, I0 ∈ S. (3)

The second image of the borderline, S2 = {θ2, I2} can be
expressed as{

I2 = f1x(θ1, I1)
θ2 = f1y(θ1, I1)

θ1 ∈ [0, π){
I2 = f2x(θ1, I1)
θ2 = f2y(θ1, I1)

θ1 ∈ [π, 2π)
∀θ1, I1 ∈ S1. (4)

Similarly, the nth image, Sn = {θn, In}, of the borderline
can be obtained by equation,{

In = f1x(θn−1, In−1)
θn = f1y(θn−1, In−1)

θn−1 ∈ [0, π){
In = f2x(θn−1, In−1)
θn = f2y(θn−1, In−1)

θn−1 ∈ [π, 2π)
∀θn−1, In−1∈Sn−1.

(5)
To show the process of images of the borderline forming
the stochastic web step by step, we calculated the 1st to

Fig. 2. Magnification of the stochastic web near its center
represented by the light grey dots and the preceding 13 order
images of the borderline denoted by the black and dark grey
curves, respectively. The details are presented in the text.

5th order images of the borderline analytically according
to equations (3–5), and that of the 6th to 13th order nu-
merically. We show them with the black and the dark grey
curves respectively marked with the corresponding num-
bers of the orders in Figure 2. The magnification of Fig-
ure 1a in the neighborhood of the web center denoted with
light grey is also presented. The figure obviously shows
that the first image of the borderline, S1, traverses the
discontinuous border S, so the second image, S2, is split
into 2 segments, and that of third, S3, becomes 4 seg-
ments, and so on. They often intersect one another. In
the same way the images intersect in a more and more
complicated manner, and finally form the stochastic web.

If we consider map (1) or (2) on its own, both of them
are conventional standard maps. It is well known that the
standard map can be dominated by the regular motions as
K < 0.4716354, thus the stochastic motion in the system
combined by maps (1) and (2) is induced purely by the
discontinuity. However, it can be expected that the dy-
namics of such a system partly keep the preserving rule.
This may be demonstrated by many KAM regions, web
holes, divided by the set of images of the borderline. In
these regions the KAM theorem holds. Figure 2 also shows
that each order of the images is tangent with web hole at
some point. This can be predicated, as a result such im-
ages of the borderline determines the size of the web hole.
In other words, they confine the chaotic motion to the
web.

2.2 The fine structures of the stochastic web

To answer the problem posed in the first section concern-
ing the stochastic web, we should consider more details
that can be obtained by magnifying Figure 1. The results
show that there exist some structures in the stochastic
layer. The stochastic layer contains more KAM regions on
a smaller scale so that the layer and the KAM regions in-
side it exhibit infinite self-similarity. On the same scale the
stochastic web takes on two typical local fine structures.
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(a)

(b)

Fig. 3. (a) The magnification of Figure 1a shows the first local
fine structure of the stochastic web: the discontinuity border-
line crosses the manifolds of hyperbolic points in the stochastic
layer. The computation is conducted by maps (1)and (2). 80000
iterations from 2000 points evenly chosen from the segment of
the borderline, {(θ, I)|θ=π,I∈[0.22,0.34]}, are recorded. (b) The
re-magnification of the part of the phase space shown by the
white square in (a) is given in the same way.

First, the borderline crosses the (stable or unstable)
manifolds of the hyperbolic points in the stochastic layer.
The borderline can chop up the KAM rings connecting the
two neighboring hyperbolic points in a chain of islands. It
may be important to our understanding of the structures
that the Birkhoff fixed point theorem holds in some phase
space. As shown in Figure 3, in phase space the appear-
ances of the hyperbolic points often alternate with that of
the elliptical ones. They may respectively form a “closed”
periodic ring due to the invertible mapping, which gen-
erally is a long periodic chain surrounding a regular is-
land chain in the stochastic layer. It should be pointed
out that all of the black points in Figure 3a are computa-
tions of the points chosen evenly from the borderline with
the exception of the KAM ring surrounding the little is-
land at the center of the figure. The borderline, denoted by
the grey solid line, crosses the manifold between the right
two of the three hyperbolic points encircling the aforemen-
tioned central island. One example shows that the phase
space of the discontinuous map can be densely filled with
a countable set of discontinuity lines for the powers of

(a)

(b)

Fig. 4. (a) The magnification of Figure 1a shows the second
local fine structure of the stochastic web: many web holes and
corresponding islands in the stochastic layer form the local
structure exhibiting infinite self-similarity. The initial points
are similarly chosen evenly from the segment of the border-
line, {(θ, I)|θ=π,I∈[0.264,0.267]}. The computations, which are
the same as those in Figure 3, are recorded. (b) The re-
magnification of the part of the phase space in the grey square
as shown in (a).

the map [15], which in fact corresponds to the set of the
images of the borderline (e.g., the discrete lines shown in
Fig. 3b) in the current case. Accordingly the images of the
borderline quite likely fall into the manifolds of hyperbolic
points, and so the iterations led by these manifolds form
the local stochastic web. As shown by Figure 3b, this fine
structure manifests self-similarity. Figure 3b is the partial
magnification of the white frame of Figure 3a. The symbol
“H” denotes a hyperbolic point, and the iterations along
its manifold are represented by the black dots. In con-
clusion, this local structure can damp down the chaotic
diffusion because the iterations along the manifold, as is
well known, may be very slow.

Second, as shown by Figure 4a the part nearby the
center of the web often demonstrates a different structure,
which shows the absence of a hyperbolic point. The iter-
ations along the local web are not then piloted by the
manifold. It is the other fine structure of the stochas-
tic web. Two neighboring points on the discontinuity
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borderline will rapidly be separated in the iteration pro-
cess, thus the images of the borderline form the local struc-
ture along which the iterations should be scarcely damped.
The magnification of that inside the white frame of Fig-
ure 4a (see Fig. 4b) also shows the self-similarity structure.
Obviously, there exist web holes and islands inside, thus
the infinite self-similarity is the basic characteristic of the
stochastic web.

3 The set of images of the borderline
in a discontinuous and noninvertible system

3.1 The chaotic attractor and the set of images
of the borderline

The studied system can be viewed as a simplified model
of the aforementioned electronic oscillator described by
the discontinuous and noinvertible concatenation of De
vogelaere’s square map and a two-dimensional linear
map [8,9], which are respectively area-preserving, i.e.,{

xn+1 = g1x(xn, yn) = pxn − (1 − p)x2
n − yn

yn+1 = g1y(xn, yn) = xn − pxn+1 + (1 − p)x2
n+1

xn ≥ f

(6){
xn+1 = g2x(xn, yn) = xn + c
yn+1 = g2y(xn, yn) = xn + c

xn < f. (7)

The backward maps of (6) and (7) can be easily written as⎧⎪⎪⎨
⎪⎪⎩

xn = g−1
1x (xn+1, yn+1)

= yn+1 + pxn+1 − (1 − p)x2
n+1

yn = g−1
1y (xn+1, yn+1)

= −xn+1 + pxn − (1 − p)x2
n

xn ≥ f (8)

{
xn = g−1

2x (xn+1, yn+1) = xn+1 − c
yn = g−1

2y (xn+1, yn+1) = yn+1 − c
xn < f. (9)

Obviously the conditions for selecting (8) or (9) to obtain
the inverse image of a point (xn+1, xn+1) is determined by
the value of xn rather than xn+1. That means that there
should be two inverse images for each point (xn+1, xn+1),
and so the system (6, 7) is noninvertible. Therefore two dif-
ferent points will merge into one as the iteration progress,
which leads to the collapse of phase space, and is the so-
called quasi-dissipative property [8–10].

The typical representation of such a quasi-dissipative
property may be that quasi-attractors exist in the phase
space. Here we only present the numerically obtained re-
sult in the case that the parameters are fixed where p =
−1.0069799, c = 0.006, f = −0.02. As shown in Figure 5,
the grey dots, which are 20 000 iterations recorded after
ignoring the first 1000 iterations from the initial point,
(−0.035,−0.0075), denote the chaotic quasi-attractor. In
order to illustrate that the chaotic quasi-attractor is con-
fined by the preceding lower order images of the bor-
derline, the black curves denoting the images from the
1st to 5th orders of the segment, {(x, y)|x=f,y∈[−0.2,0.2]},

Fig. 5. Chaotic quasi-attractor and the preceding 5 images of
the borderline. The details are presented in the text.

of the borderline, are drawn analytically. The curves are
marked with the corresponding numbers. The analysis is
obtained from the equations below which are similar to
equations (3–5),{

x1 = g1x(x0, y0)
y1 = g1y(x0, y0)

∀x0, y0 ∈ S, (10)

and

{
xn = g1x(xn−1, yn−1)
yn = g1y(xn−1, yn−1)

xn−1 ≥ f{
xn = g2x(xn−1, yn−1)
yn = g2y(xn−1, yn−1)

xn−1 < f

∀xn−1, yn−1 ∈ Sn−1 n = 2, 3, · · · , (11)

where S = {(x0, y0)|x0=f,y0∈[−∞,∞]} and nth order image
of the borderline, Sn = {xn, yn}, n = 1, 2, · · · .

One can see that the borderline is split and bent again
and again during the forward iteration process, and gradu-
ally confines the chaotic motion within the set of images of
the borderline. Thus it can be seen that the set of the im-
ages of the borderline inevitably forms the chaotic quasi-
attractor when the orders of the images tend to infinity.
It is just as has been stated in reference [14]. The cause as
to why the first few images can confine the chaotic quasi-
attractor may be associated with some special property
of the phase space outside of the set of the images of the
borderline.

3.2 The forbidden zone

This special property refers to the fact that there is a for-
bidden zone induced by the discontinuity. For two points,
(x1

n, y1
n) and (x2

n, y2
n), respectively determined by equa-

tions (8, 9) from the same point (xn+1, yn+1), if the in-
equalities, x1

n < f and x2
n ≥ f hold, then neither (x1

n, x1
n)

nor (x2
n, x2

n) is located in the definition region, so a point
(xn+1, yn+1) has no inverse image. It follows that the
phase region containing such a point is actually the for-
bidden zone because any point outside of this region can
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Fig. 6. This figure is schematically drawn to imply the forbid-
den zone by choosing its typical part J ′ and investigating the
corresponding inverse images, g−1

1 (J ′) and g−1
2 (J ′).

not iterate into it. As far as the points initially located in
the forbidden zone, they can not but escape out of there.

As shown in Figure 5, the first image of the borderline,
S1, denoted by the solid curve 1, is actually the right de-
marcation of the chaotic quasi-attractor. The sub-phase
space of the right side of the first image of the border-
line is the forbidden zone. We may use J to represent this
phase region. As a simplified description, we take the typ-
ical representation of the forbidden zone, J ′(J ′ ⊂ J), the
black zone nearest to the demarcation in Figure 6, to in-
vestigate its property. Please note that region J ′ is partly
covered by its inverse image, g−1

2 (J ′), shown by the grey
strip (where the black horizontal line denotes the bottom
edge of J ′). Obviously, this inverse image of J ′ is located
in the phase space where x > f , and the other, g−1

1 (J ′),
is located in that of x < f , which is also denoted by the
grey strip adjacent to the discontinuity borderline. These
indicate that both of the inverse images of the region J
are not located in their definition regions, and as a result
they do not exist. This is the reason why the first image
of the borderline confines the chaotic motion. However,
how can the 2nd, 3rd and the even higher order images of
the borderline circumscribe the chaotic phase region? To
answer this question, let’s firstly discuss the 2nd image:
As shown in Figure 5, after one forward iteration the for-
bidden zone become J1, which is the phase region above
curve 2 that represents the 2nd image of the borderline
S2. On the contrary, we can say that the region J is the
inverse image of the phase region J1, i.e. J = g−1

1 (J1),
but its second inverse image region, g−1

2 (J1), only exists
in the region R1 where x < f + c. So the part of J1 with-
out the inverse image, g−1

2 (J1), only provides an escaping
channel for the points originally located in the forbidden
zone. We suggest calling it the 1st escaping region of the
forbidden zone, which is denoted by the symbol, J1

∗ , and
given by the relation J1

∗ = J1 − R1. This region does not
show the quasi-dissipative property, thus it is certain that
any orbit in it is transient. Therefore, the segment of the
2nd order border image that satisfies x ≥ f +c can confine
the chaotic motion.

The 3rd image of the borderline will now be dis-
cussed. The escaping region, J1

∗ , can also be expressed as
J1∗ = {(x, y)|x≥f+c}

⋂
J1 whose left edge is {(x, y)|x=f+c}

denoted by the vertical dashed line in Figure 5. After one
iteration, J1

∗ will become J2 (J2 = g1(J1
∗ )) that is between

the image of the left edge of J1∗ , denoted by the dashed
curve marked 1 in Figure 5, and the 3rd order image of
the borderline, S3, also shown by curve 3. Here yc is the
ordinate of the intersection point of curve 2 and the ver-
tical dashed line, which can be easily obtained by solving
the following equations.{

x′ = px0 − (1 − p)x2
0 − y

y′ = x0 − px′ + (1 − p)x′2 (12){
xc = px′ − (1 − p)x′2 − y′
yc = x′ − pxc + (1 − p)x2

c
(13){

xc = f + c
x0 = f.

(14)

The value of y can be solved from equations (11, 12, 14),
which can be substituted into equations (12, 13), and fi-
nally yc can be obtained, i.e., yc

.= 0.00269. The sub-phase
region of J2 = g1(J1

∗ ) in which any point has only one
inverse image should be that, J2

∗ = {(x, y)|x≥f+c}
⋂

J2,
which can be named as the 2nd order escaping region
of the forbidden zone. Accordingly the segment, x ∈
[f + c, g1x(xc, yc)], of the 3rd order image of the border-
line, denoted by solid curve 3 in Figure 5, can confine the
chaotic motion.

The rest may be deduced by analogy: after one iter-
ation the n − 1 order escaping region of the forbidden
zone can partly become that of n order, which can be
generally expressed as Jn∗ = {(x, y)|x≥f+c}

⋂
Jn, and the

other part can become the so-called dissipative region of
which there are two inverse images. One may note that
the latter region actually forms a non-vacant intersection
with the set of borderline images, and can finally iter-
ate into the chaotic quasi-attractor. In fact the escaping
regions differ intrinsically from the dissipative ones be-
cause the former only provide the escaping channel for
the orbit originally in it, but the latter result in the phase
space contraction and quasi-dissipative properties. How-
ever, they all may be the phase region where the transient
orbits transit. In other words, in the dissipative region,
{(x, y)|x<f+c}, phase space contraction occurs, but in the
region, {(x, y)|x≥f+c}, the iterations are dominated en-
tirely by the area-preserving rule. Accordingly the itera-
tions that are partly dissipative and partly conservative
together give birth to the chaotic quasi-attractor.

4 Summary and discussion

In this paper we present some analytical and numerical
investigations of the properties of the discontinuity bor-
derline by calling attention to the characteristics shown
in discontinuous systems, invertible and noninvertible. In
such systems the chaotic motions are confined by the im-
ages of the borderline. In the invertible system, the con-
finement comes from the stochastic web formed by the set
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of images of the borderline, but in the noninvertible one,
the confinement is induced by the forbidden zone which
is delimited by the first image of the borderline from the
set of the higher order images of the borderline, as well as
the chaotic quasi-attractor. The stochastic web shows two
typical local fine structures: one is generated by the bor-
derline crossing the manifolds of the hyperbolic points in
the stochastic layer, which can damp down the chaotic dif-
fusion along the web. The other has infinite self-similarity
and does not have the crossing manifold so that the chaotic
diffusion along this local structure is relatively rapid. In
the noninvertible system, the forbidden zone means any
visiting is forbidden due to any point inside this zone hav-
ing no inverse image. Among the images of the forbidden
zone, each order can be separated into two parts: one is
the escaping region with only one inverse image, which
can provide the escaping channel for the orbit originally
inside the region, the other is the dissipative region with
two inverse images where the phase space contraction oc-
curs.

In other words, the sets of images of the borderlines
in the invertible and noninvertible discontinuous conser-
vative systems can be commonly regarded as generalized
stochastic webs relating to the chaotic motion. For the
noninvertible system, which is also the quasi-dissipative
one, the chaotic quasi-attractor is the set of the border-
line as the number of the images tends to infinity. This set
can also form a complicated web because the borderline
is split and bent again and again and intersects one an-
other in the iteration process. The chaotic motion in the
set before getting into the quasi-attractor can also be re-
garded as boundless chaotic diffusion along the stochastic
web just as that in the invertible one. So we can say that
the stochastic web is one of the basic characteristics in a
discontinuous conservative system.

However, one may ask the question: what is the set of
images of the borderline in a dissipative system? First, the
properties of the set of images of the borderline should be

the same in all kinds of discontinuous systems. Second, the
set of images of the borderline is a chaotic phase region,
which has been proved by many investigations.
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